Using Control Theory in Performance Management

Joseph L. Hellerstein eScience Institute Computer Science & Engineering

November 14, 2018

Example: Control of the IBM Lotus Domino Server

RIS = RPCs in System (users in active state)

ARX* Models

Control error: $e(k)=r^*-y(k)$ Normalized MaxUsers: $u(k)=K_P^*e(k)$ System model: y(k)=(0.43)y(k-1)+(0.47)u(k-1)

Spreadsheet file CTShortClass, tab 1 (P Control).

- Proportional controller: $MaxUsers(k+1) = K_P^*(r^*-y(k))$
- What is the effect of K on
 - > Accuracy: (want r*=y(k)=200)
 - Stability
 - Convergence rate (settling time)
 - > Overshoot

Without Controller

With Controller

Optimizing Throughput in the Microsoft .NET ThreadPool

Current ThreadPool

- Objective: Maximize CPU utilization and thread completion rates
- Inputs: ThreadPool events, CPU utilization
- Techniques
 - Thresholds on inter-dequeue times, rate of increasing workers, change in rate of increasing workers
 - > States: Starvation, RateIncrease, RateDecrease, LowCPU, PauseInjection

New approach

- Objective: Maximize thread completion rate
- Inputs: ThreadPool events
- Technique: Hill climbing

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Yu, and Zhu.

(50 work items: 100ms with 10%CPU, 90% wait. 2.2GHz dual core X86.)

Hybrid Control State Diagram

State 1a – InTransition.

Goals

- Control theory "boot camp" for software designers with no background in control theory or linear systems theory
 - Be able to formulate and solve basic control problems
 - Know references so can solve more complex problems
- Covers about 50% of the material presented in a semester class at Columbia University
- Excludes
 - Modeling: System identification, multiple input multiple output (MIMO) models, non-linear models
 - Control: control design, MIMO control, empirical tuning, adaptive control, stochastic control
 - Tools: MATLAB
 - Running examples: Apache HTTP server, M/M/1/K queueing system, streaming, load balancing
- Reference
 - "Feedback Control of Computing Systems", Hellerstein, Diao, Parekh, Tilbury. Wiley, 2004

Agenda

- Introduction:
 - Control system architecture, goals, and metrics.
- Theory: Part 1
 - Signals, Z-Transforms
- Theory: Part 2
 - Transfer functions
 - Analyzing composed systems
 - Q&A / Buffer
- Control Analysis
 - Basic controllers, precompensation, filters
 - Structured as a design exercise
- Real world applications (Various publications)
 - DB2 Utilities throttling and self-tuning memory management

M1 - Introduction

Reference: "Feedback Control of Computer Systems", Chapter 1.

The Yawning Control System

Description of system

- Room full of people
- Assumptions
 - > People yawn because they need more oxygen
 - > Yawning consumes more oxygen than regular breathing
 - > Can open windows to increase oxygen flow, but it's winter
- Control objective
 - Constrain yawning while maximizing temperature

Questions

- What are the main components of the system? A block diagram?
- What control policies can achieve the objective?
- What does it mean for this system to be unstable? What would make it unstable?

Operation of the Yawn System: Open Window

Operation of the Yawn System: Closed Window

Feedback For Yawning System

Disturbance input

What is the

- Target System
- Controller
- Reference input
- Control input
- Disturbance input
- Measured output

Answers

- Windows + Students
- Who/what determines the height of the windows
- Maximum tolerable yawn rate
- Height of the window
- Add/remove people, opening door, …
- Observed yawn rate

Types of Control

Manage to a reference value
Ex: Service differentiation, resource management, constrained optimization

Regulatory Control

Eliminate effect of a disturbance
Ex: Service level management, resource management, constrained optimization

Disturbance Rejection

Achieve the "best" value of outputsEx: Minimize Apache response times

Optimization

The SASO Properties of Control Systems

M2 - Theory

Motivating Example

The problem

Want to find y(k) in terms of K_l so can design control system that is stable, accurate, settles quickly, and has small overshoot.

a. Signals

b. Transfer functions

c. Composition of components - end-to-end system

M2a – Theory Signals

Reference: "Feedback Control of Computer Systems", Chapter 3.

Issue: Time domain analysis is cumbersome in studying complicated control systems

Z-Transform of a Signal

If
$$\{y(k)\} = y(0), y(1),...$$
 is a signal, then its z - Transform
is $Y(z) = \sum_{k=0}^{\infty} y(k) z^{-k}$

Signal Shifts and Delays

Common Signals: Impulse

Common Signals: Step

Common Signals: Geometric

Geometric: $y(k) = a^k$

$$Y(z) = 1 + az^{-1} + a^2 z^{-2} + \dots \qquad Y(z) = 1 + 0.8z^{-1} + 0.64z^{-2} + \dots$$
$$= \frac{z}{z - a} \qquad \qquad = \frac{z}{z - 0.8}$$

Properties of Z-Transforms of Signals

Signals:
$$U(z) = u(0)z^{0} + u(1)z^{-1} + u(2)z^{-2} + ...$$

 $V(z) = v(0)z^{0} + v(1)z^{-1} + v(2)z^{-2} + ...$
Shift: $zU(z) = u(0)z^{1} + u(1)z^{0} + u(2)z^{-1} + ...$
 $= u(1)z^{0} + u(2)z^{-1} + ...$
Delay: $U(z)/z = u(0)z^{-1} + u(1)z^{-2} + u(2)z^{-3} + ...$
Scaling: $aU(z) = au(0)z^{0} + au(1)z^{-1} + au(2)z^{-2} + ...$
 $= z$ -Transform of $\{au(k)\}$
Sum of signals: $u(0)z^{0} + u(1)z^{-1} + u(2)z^{-2} + ... + v(0)z^{0} + v(1)z^{-1} + v(2)z^{-2} + ...$
 $= (u(0) + v(0))z^{0} + (u(1) + v(1))z^{-1} + (u(2) + v(2))z^{-2} + ...$
 $= U(z) + V(z)$

Poles of a Z-Transform

Definition: Values of z for which the denominator is 0

Easy to find the poles of a geometric: $V(z) = \frac{z}{z-a}$ Pole is a.

What are the poles of the following Z-Transform?

$$Y(z) = \frac{7z^2 - 6z}{z^2 - 1.8z + 0.8}$$

$$Y(z) = \frac{5z}{z - 1} + \frac{2z}{z - 0.8}$$

Easy if sum of geometrics

Poles determine key behaviors of signals

Effect of Pole on the Signal

Why?

$$\frac{z}{z-a} = 1 + az^{-1} + a^2 z^{-2} + \dots \Leftrightarrow (1, a, a^2, \dots)$$

What happens when
|a| is larger?
|a|>1?
a<0?

M2b – Theory Transfer Functions

Reference: "Feedback Control of Computer Systems", Chapter 3.

Motivation and Definition

A transfer function is specified in terms of its input and output.

Constant Transfer Function

$$y(k) = au(k)$$

$$Y(z) = aU(z)$$
$$G(z) = \frac{Y(z)}{U(z)} = a$$

$$U(z)$$
 a $Y(z)$

1-Step Time-Delay Transfer Function

$$(k) = u(k-1)$$

$$Y(z) = z^{-1}U(z)$$

 $G(z) = \frac{Y(z)}{U(z)} = z^{-1}$

$$U(z)$$
 Z^{-1} $Y(z)$

n-Step Time-Delay Transfer Function

$$y(k) = u(k-n)$$

$$Y(z) = z^{-n}U(z)$$
$$G(z) = \frac{Y(z)}{U(z)} = z^{-n}$$

$$U(z)$$
 Z^{-n} $Y(z)$

Combining Simple Transfer Functions

$$(k) = au(k-1)$$

$$Y(z) = az^{-1}U(z)$$
$$G(z) = \frac{Y(z)}{U(z)} = az^{-1}$$

$$U(z)$$
 az^{-1} $Y(z)$

Additional Terms in T.F.

$$(k) = au(k-1)+bu(k-2)$$

$$Y(z) = (az^{-1} + bz^{-2})U(z)$$
$$G(z) = \frac{Y(z)}{U(z)} = az^{-1} + bz^{-2}$$

$$\underbrace{U(z)}_{az^{-1}+bz^{-2}} Y(z)$$

Geometric Sum of T.F.

$$U(z) \downarrow z/(z-0.5) \downarrow Y(z) \downarrow z/(z-0.5) \downarrow z/(z-0.5)$$

-

Complicated Transfer Functions

Decompose into a sum of geometrics

$$G(z) = \frac{0.1z}{z^2 - 0.5z + 0.06}$$

= $\frac{z}{z - 0.3} - \frac{z}{z - 0.2}$
= $1 + 0.3z^{-1} + 0.09z^{-2} + \dots - 1 - 0.2z^{-1} - 0.04z^{-2} + \dots$
= $0.1z^{-1} + 0.05z^{-2} + \dots$

- Partial fraction expansion rational polynomials to be decomposed into a sum of geometrics
- Poles of the original polynomial are the poles of the geometrics

Interpreting Transfer Functions: II

Specifies an ARX model

Given a transfer function:

$$G(z) = \frac{Y(z)}{U(z)} = \frac{z}{z - 0.5}$$

So, $Y(z)(z - 0.5) = zU(z)$ or $zY(z) = 0.5Y(z) + zU(z)$

Recall that:

$$aY(z) \Leftrightarrow ay(k)$$
$$zY(z) \Leftrightarrow y(k+1)$$

Which gives us:

y(k+1) = 0.5y(k) + u(k+1) which is equivalent to y(k) = 0.5y(k-1) + u(k)

This means that transfer functions are trivial to simulate!

Constructing Transfer Functions

- Given a ARX model, how do we construct its transfer function?
- Method: Term by term conversion from time domain to z Domain: (1) substitute for z expressions and (2) factor to obtain the ratio of output to z-Transforms.

Example

Given
$$y(k) = (0.43)y(k-1) + (0.47)u(k)$$

 $y(k) \Leftrightarrow Y(z)$
 $y(k-1) \Leftrightarrow z^{-1}Y(z)$
 $u(k) \Leftrightarrow U(z)$
Substitute : $Y(z) = (0.43)z^{-1}Y(z) + (0.47)U(z)$
Factor : $\frac{Y(z)}{y(z)} = \frac{(0.47)z}{y(z)}$

U(z) = z - 0.43

A Pop Quiz

What is the transfer function for

y(k+1) = (0.8)y(k) + (0.72)w(k) - (0.66)w(k-1)Hint : $y(k+1) \Leftrightarrow zY(z)$

Step 1: Substitute

 $zY(z) = (0.8)Y(z) + (0.72)W(z) - (0.66)z^{-1}W(z)$

Step 2 : Factor

$$\frac{Y(z)}{W(z)} = \frac{(0.72)z - 0.66}{z^2 - (0.8)z}$$

Test Your Knowledge Again

Given the transfer function
$$G(z) = \frac{b_m z^m + b_{m-1} z^{m-1} + ... + b_0}{a_n z^n + a_{n-1} z^{n-1} + ... + a_0}$$

Why must it be that $n \ge m$?

Write the ARX model:

 $a_n y(k+n) + a_{n-1} y(k+n-1) + \dots + a_0 = b_m u(k+m) + b_{m-1} u(k+m-1) + \dots + b_0$

Adjust time so that $k + n \to k$ $a_n y(k) + a_{n-1} y(k-1) + ... + a_0 = b_m u(k+m-n) + b_{m-1} u(k+m-n-1) + ... + b_0$

If m > n, then y(k) is a function of one or more u(k + m - n) in the future! **Psychic System!**

Poles of a Transfer Function

Poles: Values of z for which the denominator is 0.

Example:

$$H(z) = \frac{0.1z}{z^2 - 0.5z + 0.06} = \frac{z}{z - 0.3} - \frac{z}{z - 0.2}$$

Poles: 0.3, 0.2

Poles

Determine stability

■Major effect on settling time, overshoot

Dominant pole – pole that determines the transient response

$$G(z) = \frac{z}{z-a} = 1 + az^{-1} + a^2 z^{-2} + a^3 z^{-3} + \dots$$

|a|>1
Does not converge
|a|<1 but large
Slower convergence
a<0
Oscillates

Almost All You'll Ever Need to Know About Poles

$$G(z) = \frac{z}{z-a} = 1 + az^{-1} + a^2 z^{-2} + a^3 z^{-3} + \dots$$

Settling Time (k_s) of a System

Definition and result: Time until an input signal is within 2% of its steady state value

Steady State Gain (ssg) of a Transfer Function

Steady state gain is the steady state output in response to a step input.

M2c – Theory Composition of Systems

Transfer Functions In Series

ヽ゠ノ

$$w(k+1) = (0.43)w(k) + (0.47)u(k)$$

$$(k) \qquad (k) \qquad$$

Canonical Feedback Loop

Want to analyze characteristics of the entire system: its stability, settling time, and accuracy (ability to achieve the reference input).

It's all done with transfer functions!

View the dark rectangle as a large transfer function $F_R(z)$ with input R(z) and output T(z).

- System is stable if the largest pole of $F_R(z)$ has an absolute value that is less than 1
- System is accurate if t(n)=r(n) for large *n*, or $F_R(1)=1$
- System settling time is short if the poles of $F_R(z)$ have a small absolute value
- System has oscillations if there are poles of $F_R(z)$ that are negative or imaginary

Canonical Feedback Loop Has Many T.F.

$F_R(z)$

Transfer function from the reference input to the measured output

 $F_D(z)$

Transfer function from the disturbance input to the measured output

 $F_N(z)$

Transfer function from the noise input to the measured output

Computing $F_R(z)$

The only non-zero input is R(z).

A set of equations relates R(z) to T(z) based on our previous results

W(z) = H(z)T(z) by the definition of a transfer function. E(z) = R(z)-W(z) since this is an addition of signals. T(z) = E(z)K(z)G(z) since K(z) and G(z) are in series. T(z) = (R(z)-H(z)T(z))K(z)G(z) by substitution.

$$F_{R}(z) = \frac{T(z)}{R(z)} = \frac{K(z)G(z)}{1 + K(z)G(z)H(z)}$$

What can we say about the stability and settling times of these three transfer functions? **They are the same!**

When is the system accurate in the sense that T(z)=R(z)? $F_R(1)=1$

When is the system robust to disturbances and noise? $F_D(1)=0=F_N(1)$

Lab 3: Effect of a Disturbance (Try this later on)

Model is in file CTShortClass, tab 3 (Notes + Sensor + Disturbance)

Summary of Results

M3 – Control Analysis

Reference: "Feedback Control of Computer Systems", Chapters 8,9.

Motivating Example

The problem

Design a control system that is stable, accurate, settles quickly, and has small overshoot.

Take a holistic approach Design a control system, not just a controller

Basic Controllers

Proportional (P) Control

Integral (I) Control

$$u(k) = K_P e(k)$$
$$K(z) = \frac{U(z)}{E(z)} = K_P$$

$$u(k+1) = u(k) + K_I e(k+1)$$
$$zU(z) = U(z) + K_I zE(z)$$
$$K(z) = K_I \frac{z}{z-1}$$

 K_P and K_I are called **control gains**.

Summary of Lab 2: P vs. I Control

 $\begin{array}{l} \label{eq:proportional (P) Control} & K(z) = K_P \\ eP(k) = r(k) - yP(k) \\ uP(k) = KP^*eP(k) \\ yP(k+1) = y_coef(1)^*yP(k) + y_coef(2)^*uP(k) \end{array}$

k	r(k)	eP(k)	uP(k)	yP(k)	KP
0	200	200	160	0	0.
1	200	124.8	99.84	75.2	
<u>Integral</u>	(I) Contro	<u>I</u>	$K(z) = \frac{K_I z}{z - z}$	<u>z</u> 1	
el(k) = r(k)-yl(k)				
ul(k)=ul(l	k-1)+KI*el(k	() (_)	O(*, 1/L)		

el(k)	ul(k)	yl(k)	KI
200	80	0	0.4
162.4	144.96	37.6	

Analysis

$$F_{R}^{P}(z) = \frac{Y(z)}{R(z)} = \frac{K_{P} \frac{0.47}{z - 0.43}}{1 + K_{P} \frac{0.47}{z - 0.43}} = \frac{K_{P}}{z - 0.43 + 0.47K_{P}}$$

$$p_{P} = 0.43 - 0.47K_{P}$$

$$F_{R}^{I}(z) = \frac{Y(z)}{R(z)} = \frac{K_{I} \frac{z}{z - 1} \frac{0.47}{z - 0.43}}{1 + K_{I} \frac{z}{z - 1} \frac{0.47}{z - 0.43}}$$

$$= \frac{0.47K_{I}z}{(z - 1)(z - 0.43) + 0.47K_{I}z}$$

$$= \frac{0.47K_{I}z}{z^{2} + (0.47K_{I} - 1.43)z + 0.43}$$

$$p_{I} = \frac{1.43 - 0.47K_{I} \pm \sqrt{(0.47K_{I} - 1.43)^{2} - 1.72}}{2}$$

$F(\tau) -$	Y(z)	K(z)G(z)
$\Gamma_R(2) =$	$\overline{R(z)}$	$\overline{1+K(z)G(z)}$

Settling Times, Steady State Gains

Ctrl Gain	Ρ	1
0.1	5, 0.076	43, 1
0.4	3, 0.25	10, 1
3.0	198, 0.71	10, 1

Conclusions from P vs. I Comparison

50

Conclusions:

P is fast

I is accurate and has less overshoot.

Design challenge:

Make P accurate. Reduce P's overshoot.

Making P Control Accurate

Precompensation: Adjusts the reference input so that the right output is obtained.

Lab 4: Precompensation

- Modify P control to include pre-compensation
- Find a value for the precompensator that makes P control accurate
 - Trial and error
 - Adjust based on ratio between reference and output
- What happens if the reference input changes? What if the control gain changes?
- What is the general rule for the value of the precompensator?

Want
$$R(1)P(1)F_R(1) = R(1)$$

So $P(1) = \frac{1}{F_R(1)} = \frac{1 - 0.43 + 0.47K_P}{0.47K_P}$
Consider $K_P = 2.3, R(z) = 200$; then $P(z) = 1.53$

Try on spreadsheet. See if it works for other reference inputs.

Reducing P's Overshoot

Filter: Smooths values over time.

c – Weight past history (make it smoother) *t(k+1)=ct(k)+y(k+1)*

Lab 5: Precompensation + Filter

- Add a filter to precompensated P control
- What values of c produce smooth t(k)?
- What are the other effects of the filter?

Results of Filter Design

w/o filter

The good news about the filter: Can eliminate overshoot The bad news: Inaccurate and slower.

with filter: c = 0.75

Why inaccurate?

Analysis of the Filter

Analysis 1: Why does H(z) cause the system to be inaccurate?

Want $P(1)F_R(1)H(1) = 1$ We have designed P(z) so that $P(1)F_R(1) = 1$. So, it must be that $H(1) \neq 1$.

$$t(k+1) = ct(k) + y(k+1)$$
$$zT(z) = cT(z) + zY(z)$$
$$H(z) = \frac{T(z)}{Y(z)} = \frac{z}{z-c}$$
$$H(1) = \frac{1}{1-c}$$

Designing a Normalized Filter

Want H(1) = 1

Can do this by dividing by multiplying by 1-c.

That is, use $H(z) = \frac{z(1-c)}{z-c}$

Check the spreadsheet: Lab 6.

Converting this into a time series model, we have t(k+1) = ct(k) + (1-c)y(k+1)

Analysis of the Filter

t(k+1)=ct(k)+(1-c)y(k+1)

Analysis 2: Why does H(z) cause the system to be slower?

What are the poles of $P(z)F_{R}(z)H(z)$? Let $p = \max_{poles} \{P(z), F_{R}(z), H(z)\}$ P(z) has no poles $F_{R}(z) = \frac{0.47K_{P}}{z - 0.43 + 0.47K_{P}}$ If $K_{P} = 2.3, F_{R}(z) = \frac{1.1}{z - 0.65}$ $H(z) = \frac{T(z)}{Y(z)} = \frac{1 - c}{z - c}$ If c = 0.75, then there is a pole at 0.75.

So, the filter adds a closed loop pole at c.

Check the spreadsheet.

$$u(k) = u_{p}(k) + u_{I}(k)$$

$$K(z) = \frac{U(z)}{E(z)} = K_{p}(z) + K_{I}(z)$$

$$= K_{p} + \frac{K_{I}z}{z-1}$$

$$= \frac{(K_{p} + K_{I})z - K_{p}}{z-1}$$

$$u(k) = u(k-1) + (K_{p} + K_{I})e(k) - K_{p}e(k-1)$$

Lab 7: PI Control

M4 – Applications

DB2 Utilities Throttling (DB2 v8.1)

- http://www.databasejournal.com/features/db2/article.php/3339041
- <u>"Throttling Utilities in the IBM DB2 Universal Database Server,"</u> Sujay Parekh, Kevin Rose, Yixin Diao, Victor Chang, Joseph L. Hellerstein, Sam Lightstone, Matthew Huras. American Control Conference, 2004.

Self-tuning memory management

- "Using MIMO Linear Control for Load Balancing in Computing Systems," Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. American Control Conference, 2004.
- "Incorporating Cost of Control Into the Design of a Load Balancing Controller," Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. Real-Time and Embedded Technology and Application Systems Symposium, 2004.

The Utilities Throttling Problem

Utilities have a big impact on production performance.

Administrative policy

There should be no more than an x% performance degradation of production work as a result of executing administrative utilities

Effector: Priority vs Self-Induced Sleep (SIS)

Block Diagram

Online Modeling to translate from Pages/sec (Y) to % Impact (M)

Controller Evaluation

System Description: DB/2 UDB – Self-Tuning Memory

Database Memory Management

MIMO Controller Design: Linear Quadratic Regulation

Measured Benefit of Load Balancing

- Decision support workload
 - Long running transactions
 - Resource requirements vary over time
- Study effect on total query response time (T_s) in TPC-H.

59%

Summary

- Control systems consists of elements
 - Controller, target system, transducer, filter, adapter, …
- Control objectives for computing systems focus on
 - SASO: Stability, accuracy, settling time, overshoot
- Classical control theory builds on linear system theory
 - Signals, transfer functions, composition of systems, use of z-transform to encode time related information
- Control analysis involves
 - Constructing ARX models for components
 - Translating these models into the z-domain (transfer functions)
 - Using composition of systems to find the end-to-end transfer functions of interest
 - Analyzing the SASO properties of these systems
- These simple models and analyses have had significant practical at IBM
 - Regulating the execution of administrative utilities
 - Self-tuning memory management

Summary of Results

Bibliography – Control Theory Textbooks

- Modern Control Engineering, K Ogata, Prentice Hall, 1996.
- Feedback Control of Dynamic Systems, GF Franklin, JD Powell, and A Emami-Naeini, 1993.
- Discrete-Time Control Systems, K Ogata, Prentice Hall, 1995.
- Adaptive Control, KJ Astrom and B Wittenmark, Addison Wesley, 1995.
- Applied Nonlinear Control, JJE Slotine and W Li, Prentice Hall, 1991.
- Robust Adaptive Control, PA loannou and J Sun, Prentice Hall, 1996.
- Introduction to Stochastic Control Theory, KJ Astrom, Academic Press, 1970.
- Fuzzy Control, KM Passino and S Yurkovich, Addison Wesley Longman, 1998.
- Feedback Control of Computing Systems, JL Hellerstein, Y Diao, S Parekh, and DM Tilbury, Wiley, 2004.

Bibliography – Starter Set of Articles

- CV Hollot, V Misra, D Towsley, and WB Gong. A control theoretic analysis of RED. IEEE INFOCOM'01, 2001.
- Y Lu, A Saxena, and TF Abdelzaher. Differentiated caching services: a control-theoretic approach. ICDS, 2001.
- S Parekh, N Gandhi, J Hellerstein, D Tilbury, J Bigus, and TS Jayram. Using control theory to achieve service level objectives in performance management. Real-Time Systems Journal, 23:127-141, 2002.
- A Robertsson, B Wittenmark, and M Kihl. Analysis and design of admission control in Web-server systems. American Control Conference, 2003.
- L Sha, X Liu, Y Lu, and T Abdelzaher. Queueing model based network server performance control. IEEE RealTime Systems Symposium, 2002.
- CE Rohrs, RA Berry, and SJ O'Halek. A control engineer's look at ATM congestion avoidance. GLOBECOM, 1995.
- Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. Incorporating cost of control into the design of a load balancing controller. Invited paper, Real-Time and Embedded Technology and Application Systems Symposium, 2004.
- Sujay Parekh, Kevin Rose, Yixin Diao, Victor Chang, Joseph L. Hellerstein, Sam Lightstone, Matthew Huras. Throttling utilities in the IBM DB2 Universal Database Server. American Control Conference, 2004.