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Example: Control of the IBM Lotus Domino Server

Architecture
Admin Controller
A MaxUsers E
. -~ -
Desired :
RIS
Actual RIS
Block Diagram
Desired MaxUsers ?%ual
e(k)
RIS 4 u(k) y(K)
>

r(k) 4<|>‘ Controller » Server

RIS = RPCs 1in System
(users 1n active state)



Reference

RIS y
4 ok

Block Diagram

Controller

u(k)

MaxUsers

\ 4

Server

Actual

RIS
y(k)

Spreadsheet file CTShortClass, tab 1 (P Control).

ARX* Models

Control error: e(k)=r*-y(k)
Normalized MaxUsers: u(k)=Kp*e(k)

System model: y(k)=(0.43)y(k-1)
+(0.47)u(k-1)

Proportional controller: MaxUsers(k+1) = Kp*(r*-y(k))
What is the effect of K on
Accuracy: (want r*=y(k)=200)
Stability

Convergence rate (settling time)

Overshoot

*ARX is autoregressive with an external input

¢



Database Server O

Buffer Pools, Sorts,
Package Cache, etc. O

v

Memory | |[Statisti o] _— o

et | N\ 59%
L O Reduction
Agents in Total RT

hc12-09

1=10.680

o
o
R
o
o
¥

o

o

=
o
o
=y

Benefit (in sec. per 4K pages)

Benefit (in sec. per 4K pages)

oO

o
%
"
|
i

20 40 60 80 o 0 - 30
Control interval (in 300 sec.) Control interval (in 300 sec.)

Without Controller With Controller
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a 100 200 300 400 =00 g00 700

Time (seconds)
. Network T “ ) R e
e ServerA° | ServerA | ServerB, | ServerB |
‘I_I_I' E-mail Relational Zﬁ‘;isi)or': I éecurithy
I I Local %c;c:tisrz dsa;?\l,):rsse gateways L SHeNerT » Many types of
jﬁ_—;-i Director | ” m | servers and

applications

Presentation

Logic Gateway

Application
Server

ServerA

[

Hub Servers

Imessaainal

\ Business

Server B

‘: =) @ “
-

l DSS /
Client

ServerB-

=

e

transaction
monitor

SYSPLEX

|

g
mainframe

muansaction
__@\\ ‘ monitag

YSPLEX

mainframe

ﬁ hierarchical
A = \ database
Server A | ﬁ Server B | | transaction | mainframe
|Application ‘ processing
Logging Servers ‘Logging Logging facility ;
Front end for online customer service Back-end
Systems

Stabililty

5
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Optimizing Throughput in the Microsoft .NET ThreadPool

QueueUserWorkItem/()

Concurrency
Level Completion Rate (throughput)
ThreadPool —>
m Current ThreadPool

< Objective: Maximize CPU utilization and thread completion rates
< Inputs: ThreadPool events, CPU utilization

< Techniques

» Thresholds on inter-dequeue times, rate of increasing workers, change in rate
of increasing workers

» States: Starvation, Ratelncrease, RateDecrease, LowCPU, Pauselnjection
m New approach
< Objective: Maximize thread completion rate
< Inputs: ThreadPool events

< Technique: Hill climbing
SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Yu, and Zhu.




Hill Climbing Controller

Discrete
Derivative

160

Large
ontrolGai

1 |

CurrentHistor

80

LastHistory

*

B =

O N <

Want large gain so move quickly, but not
overshoot.

Making good moves depends on

* (] h h .
i% «% . throughput variance
([ ]
= shape of curve

v ﬁg
=

NewConcourrencyLevelD
large ControlGain

r r

4
QConcurrencé

CurrentConcurrencyLevel

50

NewConcurrencyLe\D
or small ControlGain

30 40

O = History mean

(50 work items: 100ms with 10%CPU, 90% wait. 2.2GHz dual core X86.)



Hyorid Lontrol state viagram

WaitForSteadyState
IsInTransition ()

ChangePointWhileLookingForMove
Same as ChangePointWhileInitializing

State 2a — InTransition
CurrentHistory.Add (data)

v

State 2 — Looking for move.
CurrentHistory.Add (data)

CompletedInitializing
IsStableHistory (LastHistory) :
LastControlSetting = CurrentControlSetting

CurrentControlSetting ExploreMove ()

—5| State 1 - Initializing LastHistory.

LastHistory.Add (data)

ChangePointWhileInitializing
IsChangePoint (LastHistory) :
LastHistory = data
CurrentControlSetting
ExploreMove ()

DirectedMove

IsSignificantDifference (CurrentHistory,
LastHistory) :

LastControlSetting CurrentControlSetting
CurrentControlSetting DirectedMove ()
LastHistory = CurrentHistory
CurrentHistory = null

StuckInState

IsStableHistory (CurrentHistory) &
CurrentHistory.Count > SufficientlylLargeHistory:
LastControlSetting CurrentControlSetting
CurrentControlSetting ExploreMove ()
LastHistory CurrentHistory
CurrentHistory = null

ReverseBadMove
CurrentHistory.Count > MinimumHistory

& LastHistory.Mean() > CurrentHistory.Mean() :
Swap (CurrentControlSetting,
LastControlSetting)

ChangePointInQueueWaiting
IsChangePoint (QueueOfWaiting)
\ 4

State 1a — InTransition.




Control theory “boot camp” for software designers with no background in control
theory or linear systems theory

Be able to formulate and solve basic control problems

Know references so can solve more complex problems

Covers about 50% of the material presented in a semester class at Columbia
University
Excludes

Modeling: System identification, multiple input multiple output (MIMO) models, non-linear models

Control: control design, MIMO control, empirical tuning, adaptive control, stochastic control
Tools: MATLAB
Running examples: Apache HTTP server, M/M/1/K queueing system, streaming, load balancing

Reference

“Feedback Control of Computing Systems”, Hellerstein, Diao, Parekh, Tilbury. Wiley,
2004



10

Introduction:
Control system architecture, goals, and metrics.
Theory: Part 1
Signals, Z-Transforms
Theory: Part 2
Transfer functions
Analyzing composed systems
Q&A / Buffer
Control Analysis
Basic controllers, precompensation, filters
Structured as a design exercise
Real world applications (Various publications)
DB2 Utilities throttling and self-tuning memory management
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M1 - Introduction

Reference: “Feedback Control of Computer Systems”, Chapter 1.



Elements of a Control System

Disturbance Input
Reference Control Control Measured
Input 4+ Error | contotier Input | Target Output X
B o System
Transduced
O t
utpu Transducer |
Components

Target system: what 1s controlled

Controller: exercises control

Transducer: translates measured outputs
Data

Reference input: objective

Control error: reference input minus measured output

Control input: manipulated to affect output

Disturbance input: other factors that affect the target system

Transduced output: result of manipulation

12
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Description of system
Room full of people
Assumptions
People yawn because they need more oxygen
Yawning consumes more oxygen than regular breathing
Can open windows to increase oxygen flow, but it's winter
Control objective
Constrain yawning while maximizing temperature
Questions
What are the main components of the system? A block diagram?
What control policies can achieve the objective?
What does it mean for this system to be unstable? What would make it unstable?






Operation of the Yawn System: Closed Window

closed
window

15



Disturbance input

Reference Control Measured
Input Input . Output
() » Controller > arget >
T System
What is the Answers
Target System Windows + Students
Controller Who/what determines the height of the windows
Reference input Maximum tolerable yawn rate
Control input Height of the window
Disturbance input Add/remove people, opening door, ...

Measured output Observed yawn rate

16



Administrative

RPC

Records S
( Server
Log

\ MaxUsers

i Measured

Tasks
Client \\RPCS \
} Server
Client .
Architecture
Administrative
Tasks Target System
M ax US@I"S . ......................... Actual ........................
' RIS

—!| Server

RIS

Block Diagram

17



= Adapts

Administrative =Simple system model
Reference Tasksl ................ Target, .S}'..S.t.@m.:
RIS MaxUsers Actual i Measured
+ Closed Loop X RIS F RIS
B Controller | Server Sensor [T~

Closed LLoop System

Reference

RIS

ﬁ

Administrative
TaSkslTargetSystem
MaxUsers Actual Measured
Open Loop : ‘ RIS : RIS
Controller " Server Sensor :
=Stable
........................................................... «Fast settling

Open Loop System

18



Types of Control

Refereonce MarUsers £ g St =Manage to a reference value
RIS : : . . -
Controller il Server f—] Sensor b—mp mEx: Service differentiation,
_ resource management, constrained
"""""" optimization
Regulatory Control
Administrative
Tasks
i MasUsars £renen o
RIS E E RIeSasure
Controller > Server »| Sensor 1>
Administrative DlStllI'banCG RC_]CCthIl
Tasks
e T T .
: P Measured = Achieve the “best” value of outputs
C 11 »1 S > - > I 0 .
S B semser [ *Ex: Minimize Apache response times
1 ............................... X Optlmlzatlon

19



The SASO Properties of Control Systems

Stability Accuracy Short Settling Small Overshoot

Unstable System

Measured Output
N

0 2 4 6 8 10 12 14 Time (k)

20



M2 - Theory



Motivating Example

u(k+1) =u(k)+ K,e(k+1)  wlk+1)=(0.43)w(k)+(047uk)  p(k+1) = 0.8y(k)+0.72w(k) —0.66w(k —1)

Sensor @

o
»

e(k) = r(k)— y(k)

The problem

Want to find y(k) in terms of K; so can design control system that is stable, accurate,
settles quickly, and has small overshoot.

a. Signals
b. Transfer functions

c. Composition of components — end-to-end system

22



M2a — Theory
Signals

{ Controller Server @» Sensor @

e(k) = r(k)— y(k)

Reference: “Feedback Control of Computer Systems”, Chapter 3.

23



Signals
+

VA C . . >
. ontroller » Server » Sensor
(k) _\_J u(k) w(k) (k)
e(k)=r(k)—y(k)
6
ol . Time domain representation
) y(0)=1
' 1 y(1)=3
y(k) % ! | v@)=2 A signal is a real-valued function of time.
ol | y(3)=5
1e¢ y(4)=6
0O 1 2 3 4
k

Time domain analysis is cumbersome in studying complicated control systems

24



5 . _ Time domain representation z domain representation
A _ y(0)=1 120 +
y(k) y(1)=3 3z +
°f ! 1 y(2)=2 2z 2 +
2 I Y= 5z 3 +
W _ y(4)=6 6z 4
O0 1 k 2 3 4

0 1. :
Z is time shift: z° =1: k=0 (current time)

z -1 is time delay —> 2z k=1 (one time unit in the future)

z " k =2 (two time units in the future)

If {y(k)} = y(0), y(l),....1s a signal, then its z - Transform
isY(z2)=) y(k)z™"

25



Signal Shifts and Delays

V(z)=zU(z)=4+5z" -z +2"

i ik} | o {y(k+1)} ! ty(k-1)}
£ | Shift ) Delay -

0 I B I 0

-1 l {9 1L J.
U(z)=—2+4z"+5z7 -z +z7 V(z)=z"'U(z)=2z"+4z7 +5z7 -1z

(Drop exponents >0.)

26



y(k)

Impulse 1 vy 0)=1Ly(k)=0,k>0
Y(z)=1z" +0z7" +0z7 +...
rE—— time (k) =1

U(z)==2+4z"'+5z7 -z +z* 5l

This can be viewed as a sum of

impulses at time 0, 1, 2, 3, and 4. b I
0 ©
1 l
20 1 2 3 4 5

27



Step

28

y(k)

2

3

(k) =1k>0

time (k)

Y(2)=12"+1z"" +1z7 +...




Common Signals: Geometric

1

Geometric: y(k) = a" 08} ¢ a=0.8
.00 HHHJOTTH;SM..%
Y(z)=1+az ' +a’z" +... Y(z)=1+0.82"+0.64z7 +...
Z z

29



Signals: U(z) =u(0)z° +u(D)z™" +u(2)z7 +...
V(z)=v(0)z’ +v(D)z™ +v(2)z7 +...
Shift: zU(z) =u(0)z' +u(1)z’ +u(2)z™" +...
=u()z’ +u2)z™ +...
Delay: U(z)/z=u(0)z"' +u()z™ +u(2)z” +...
Scaling: aU(z) = au(0)z° + au())z™" +au(2)z™ +...
= z-Transform of {au(k)}
Sum of signals: #(0)z° +u(D)z "' +u(2)z” +...+v(0)z° +v(D)z™" +v(2)z~ +...
= w(0)+v(0)z’ + @) +v()z" + m(2) +v(2))z +...
=U(z)+V(z2)

30
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Definition: Values of z for which the denominator is 0

z
Easy to find the poles of a geometric: V(Z) = Pole is a.
zZ—d
| 7z° —62
What are the poles of the following Z-Transform? Y(Z) =

z"—=1.82+0.8

5z 2z
Easy if sum of geometrics Y(Z) - | + z—0.8

Poles determine key behaviors of signals



Effect of Pole on the Signal

yk)=a* < —=
z—d

5 5 5
0l%ecccccses 011022200000 o‘TTTTTTH
5 5 5

5 5 5 [
O‘T‘omom 0’%’ O‘iTl lTl
5 5 5 J.

Why?

z

z—da

32

-1 2 -2 2
=l+az +az " +..<(,a,a%,...)

m What happens when
M|a| 1s larger?
Wla|>1?
ma<0?

m |a|>1

mDoes not converge
m Larger |a|

mSlower convergence
m a<0

mOscillates



M2b — Theory
Transfer Functions

+
e e




Motivation and Definition

Motivation: y(k) = (a)y(k-1)
ARX model relates u(k) to y(k) u(k) *(b)u(k-1) y(k)
(ARX is autoregressive with external input.)

Uaz),| b | Y@

z—d

Transfer function expresses this relationship in the z domain

G(z) = Output Slgnal _ Y(z)
Input Signal  U(2)
or Y(z)=G(2)U(2)

assuming initial conditions are 0.

A transfer function is specified in terms of its input and output.

34



Constant Transfer Function

| yw=auk) |—
o y(k) = au(k) 7
Y(z)=aU(2)
G(n=12) _,
U(z)
U@ Y@

35




1-Step Time-Delay Transfer Function

——

u(k)

y(k) = u(k-1)

Y(2)=z"U(z)

G(z) =

Y(z) _
U(z)

Uz)

36

Y(2)

-1

y(k)

1

(=]

wal%

(=]
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n-Step Time-Delay Transfer Function

1 ] 1
— 0 yk)=uk-n) — 0.8 ] 0.8|
u(k) y(k) — 7 |—
_06 - 1 o6l
< N
S >
0.4 - 0.4}
0.2 ] 0.2t
Y(2)=z"U(z)
ole oo 0 o
Y(z ) 0 2 4 0 2 4
G(Z) — ( ) — n k k
U(z)
1 1 50 0 d
0.8 0.8}
— 72 |—
uE) V) g &
— 7 ey = <
0.4 0.4}
0.2 0.2}
% 2 = %2 =
k k

37



Combining Simple Transfer Functions

— V() = au(e1) | |

Y(z2)=az"'U(z)
G(z)= ();((?) =az™ 5
U@ ] Y@ 5

38
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W y(k) = au(k-1)+bu(k-2) W

Y(2)=(az' +bz)U(2)
Y(z)
U(z)

—az '+ bz 2

G(z)=

U(z) Y(z)

—> az'+bz? —%

39

U@z

Y(z)

3714272 =/,
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u(k) = ay(k-1) + u(k)

y(k) = u(k)+au(k-1)+a2u(k-2)+...

Y(z)
U(z)

ﬂ% +az'+a?z? + ... ﬂ

Y(z)
U(z)

HU(Z) z/(z-a) _»Y(z)

40

G(z) =

=(+az' +a’z%+...
(

—l+az'+a%*z7+.. =

G(z)=

z

z—d

u(k)

u(k)

1.5¢

0.5

U(z)

z/(z-0.5)

1.5}

—_

0.5

y(k)

y(k)

| Y(2),
y
5
|
05
oL L[t

1.5} o

0.5




Decompose into a sum of geometrics

U(z) 0.1z Y(z) G 0.1z
. Z)=
5 ' (2) z2=0.52+0.06
22 =0.5z+0.06 i .
| 0.5 T z-03 z-02
2l —140327 400922 4.~ 1-0.22" —0.04z2 +...
0.4} 1 =0.1z7" +0.05z7% +...
1.5}
0.3}
< 1 < Partial fraction expansion allows
S 0 Ao 5 rational polynomials to be
“ decomposed into a sum of
0.5 geometrics
' 0.1} - . .
Poles of the original polynomial are
T the poles of the geometrics
Ol s o o o d 0b ? o d
0 2 4 0 2 4

41



Signal generated by an impulse input

Example:

Y(z)

G(z)= )

Y(2) =G(2)U(z) = G(2)(1) =

42

U(z)

G(z)

3z 1+2772

Y(z)




Interpreting Transfer Functions: |

Specifies an ARX model

?ivena - G(z) = Y(z2) __Z
ransfer function: U(Z) z—0.5

S0,Y(z)(z—0.5)=zU(z)or zY(2) =0.5Y(2) + zU(2)

aY(z) < ay(k)
zY(z) < y(k+1)

Recall that:

y(k+1)=0.5y(k)+u(k +1) which is equivalent to
y(k)=0.5y(k—1)+u(k)

Which gives us:

This means that transfer functions are trivial to simulate!

43
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Given a ARX model, how do we construct its transfer function?

Method: Term by term conversion from time domain to z Domain: (1)
substitute for z expressions and (2) factor to obtain the ratio of output to
z-Transforms.

Example

Given y(k) = (0.43)y(k — 1)+ (0.47)u(k)
k)= Y(z2)

y(k-1) < z7'Y(2)

u(k) < U(2)

Substitute : Y(z) = (0.43)z7'Y (2) + (0.47)U(z2)
Y(z) (0.47)z

U(z)  z—043

Factor:



What is the transfer function for
y(k+1)=(0.8)y(k)+(0.72)w(k) —(0.66)w(k —1)
Hint: y(k+1) < zY(2)

Step 1 : Substitute
zY(z) =(0.8)Y(2) +(0.72)W (z) — (0.66)z"'W (2)

Step 2 : Factor
Y(z) (0.72)z-0.66
W(z) z>—(0.8)z

45



m m—1
b z"+b z" +..+b,

Given the transfer function G(z) = - —
az' +a, z' +..+a,

Why must it be that n > m?

Write the ARX model:
ayk+n)+a, yk+n-D+..+a,=bulk+m)+b, u(k+m-1)+...+b,

Adjust timeso thatk+n — k
ayk)y+a, yk-1)+..+a,=b u(k+m—-—n)+b, ulk+m-n—-1)+...+b,

If m > n, then y(k)1s a function of one or more u(k + m —n) in the future!

Psychic System!

46



Poles: Values of z for which the denominator is 0.

Example:

H(z)=

0.1z .z oz
z2-052z+0.06 z-03 z-02

Poles: 0.3, 0.2

Poles
Determine stability
Major effect on settling time, overshoot
Dominant pole — pole that determines the transient response

z _ _ _
—l+taz'+a’z°+a’z> +...

G(z) =

Zz—d

47

|a|>1

|a|<

a<(0

Does not converge
1 but large
Slower convergence

Oscillates



Im(z) I[I III |
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o=

—-
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p—g
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@
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] Re(z)
1.0

—l+az'+a’z%+a’z +...



Settling Time (k) of a System

Definition and result: Time until an input signal is within 2% of its steady state value
z/(z-1) ‘

_4 '
Y, kg = , where| a |1s the largest pole of G(z),
(2) In|al
G(z) —
: : z _ _ _
: with equality for G(z) = =l+az' +a’z 7 +a’z” +
(unit step) z—a
(2= 03422031 _4
Examples: _4 2 ~1.23z2° +0.34z kg = ~18
z k.~ ~ 6 poles:0,0.43,0.8 In0.8
G(z)=——C S 105 0.5
z—0.5 nuv. ol = ] ' ’
(0]
2 2 o101 OP)
of 0.4}
o ©
1.5} . o
1.5} 150 it
0.3
< <
< 1660000000004 < 1¢ S T >
3 = 0.2}
0.5} 0.5} 0.5| | 01l
0O 5 10 0O 5 10
k k 0 10 20 30
k

0 10 20 30




Steady State Gain (ssg) of a Transfer Function

Steady state gain is the steady state output in response to a step input.

U(z) ‘ G(2) Y(z)
Example:
uooy=1 O3

50

u(k)

OOOOOO

ssg of G(z) is Y(«) = G(1

u (o)

where U(z) is a step input.

o) _2_,_
Mw)_l_z_Ga)




M2c — Theory

Composition of Systems

Controller

Reference: “Feedback Control of Computer Systems”, Chapter 4.
System of

systems

51



w(k +1) = (0.43)w(k) + (0.47)u(k)

—

u(k)

k)

——

y(k)

>

Yk +1) = 0.8y(k) +0.72w(k) — 0.66w(k — 1)

W(z):

Y(z) W(z) Y(2)

H(z)

Y(2)

U(z) U(z) W(z)

52

N

=G(z2)H(z2)

u(k)

y(k)

G(z)H(z)

Y(2)

T.F. provide an easy way to

analyze the behavior of
complex structures.



Canonical Feedback Loop

Noise
Disturbance Input
D(z) Input N(z)
Reference M d
e easure
npu Controller Target System Output
R(z) E(z) U(z) + V(z) Yzt Tz
_|_
O— ko —O0— o FO—

Permitted operations
Summing signals

Wiz .
( ) H (Z ) . Cascading systems

Transducer

Want to analyze characteristics of the entire system: its stability,
settling time, and accuracy (ability to achieve the reference input).

It’s all done with transfer functions!

53



I'(2)

Measured
Output

T(Z):

F.(z)=
z(2) R(2)
Reference D(z)=0 N(z)=0
eyt Controller Target System
R(z) L+ E@ U(z) + V(z) Y(z)y +
Q r  K(z) +: s G(z) "
Transducer
W(z) ve b

View the dark rectangle as a large transfer function Fr(z) with input R(z) and output T(z).
System is stable if the largest pole of Fg(z) has an absolute value that is less than 1
System is accurate if t(n)=r(n) for large n, or Fr(1)=1

System settling time is short if the poles of Fg(z) have a small absolute value

System has oscillations if there are poles of Fz(z) that are negative or imaginary
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Noise

Disturbance Input
D(z) Input N(z)
Reference
Input Measured
Controller Target System Output
RE) , E() Uz) |+ V() Yoyt 1)
{O— K@ - | G | :
Wi(z) He) :
Transducer
F,(z) Fy(z) Fy(2)

Transfer function from the
reference input to the
measured output

55

Transfer function from the
disturbance input to the

measured output

Transfer function from the
noise input to the
measured output



The only non-zero input is R(z).

Rz , E() Ulz) 1(z)
{O—t k@ ‘G =

Simplified block diagram
since D(z)=0=N(z)

Wi(z)

H(z)

A set of equations relates R(z) to T(z) based on our previous results

W(z) = H(z) T(z) by the definition of a transfer function.
E(z) = R(z)-W(z) since this is an addition of signals.
T(z) = E(z)K(z)G(z) since K(z) and G(z) are in series.

T(z) = (R(2)-H(2) T(z))K(z)G(z) by substitution. T'(z)  K(2)G(z)

Fr(z)=

R(z) 1+K(2)G(2)H(z)
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D(z) N(z)

RZ) | E@) Uz) |+ V() YA+ 1)
> > > G —p
{—1 K@ - @
Wiz
(z) He)
Reference to Output Disturbance to Output Noise to Output
z) A+ K(2)G(2)H(2)> (z) dAxK(z)G(2)H(z N(z) 4+K(2)G(z)H

What can we say about the stability and settling times of these three transfer functions?
They are the same!

When is the system accurate in the sense that T(z)=R(z)? Fg(1)=1

When is the system robust to disturbances and noise? Fp(1)=0= Fy(1)
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Lab 3: Effect of a Disturbance (Try this later on)

d(k)
y(k +1) = 0.8y (k) +0.72w(k) — 0.66w(k —1)
r(k) + (k)
T~ + Notes Notes -
) Controller . >
R vk~ uiy | Server w(k) Sensor
e(k) = (k) — y(k) wik +1) = (0.43)w(k) + (0.47)u(k)

m Model is in file CTShortClass, tab 3 (Notes + Sensor + Disturbance)
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Summary of Results

Transfer Function

Adding signals:
of System
A(z) {c(k)=a(k)+b(k)} has
Y(z ) é; C(z) Z-Transform A(z)+B(z).
G(z) > t+
o ] P B(z)
15l 0.4 ?3) Transfer functions in series

N U(z) W(z) Y(z)

0.3 A

S ( YOO
0.2} is equivalent to
05| ol —U-[UZ G(z)H(z) P2,

D 10 20 30 S 10 20 30 Transfer function of a feedback loop

k k Target

: - R(z) Controller  System T(z)
Stable system if |a|<7, where a is the largest pole Yool K o {6 =0
of G(z) -
Settling time ~ |, where | a | is the largest pole of G(z) Transducer
nla
T(z)
o0 — —
Steady state gain of G(z) is > () _ G(1) Fr(2)=
u(e)
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K(2)G(z)
R(z) 1+H(2)K(2)G(z)
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M3 —
Control Analysis

Reference: “Feedback Control of Computer Systems”, Chapters 8,9.



Motivating Example

r(k) 4

B0

e(k)

e(k) = r(k)— y(k)

w(k +1) = (0.43)w(k) + (0.47)u(k)

u(k)

The problem

Notes
Server

Yk +1) = 0.8y(k) +0.72w(k) — 0.66w(k —1)

w(k)

v

Notes
Sensor

y(k)

—l

Design a control system that is stable, accurate, settles quickly, and has small

overshoot.

Take a holistic approach
Design a control system, not just a controller
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E(z) U, (Z) Y(z) ‘

R(Z)—+»_ i K(z) +[ G(z)
Proportional (P) Control Integral (I) Control
u(k) = K e(k) u(k +1) = u(k)+ K ,e(k +1)
zU(z)=U(2)+K,zE(z)
K(z)=28) g, :
E(z) K(z)=K, 1
z —

Kr and K, are called control gains.
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Proportional (P) Control K(z)=K,
eP(k) = r(k)-yP(k)
uP(k)=KP*eP(k)
yP(k+1)=y_coef(1)*yP(k)+y_coef(2)*uP(k)

k r(k) eP(k) uP(k) yP(k) KP
0 200 200 160 0 0.8
1 200 124.8 99.84 75.2
Integral (I) Control K(z)= K,z
z—1

el(k) = r(k)-yl(k)
ul(k)=ul(k-1)+Kl*el(k)
yl(k+1)=y_coef(1)*yl(k)+y_coef(2)*ul(k)

el(k) ul(k) yl(k) KI

200 80 0 0.4
162.4 144.96 37.6
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yP (output)
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Time (k)

yl (output)
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10

20 30 40 50
Time (k)




Analysis E(z) U(z) Y(z)

_|_
R &, K(z) G(z)
— 3
K, 0.47
Fro=X@ __"7-043 _ Ky
R
R(Z) 1+KP 0.47 z—043+ 0.47KP Fo ()= Y(z)  K(2)G(z)
z—0.43 BT Rz 1+K(2)G(2)
p,=043-0.47K,
z 0.47
v M ~12z-0.43 - - -
Fy(z)= =—~ : Settling Times, Steady State Gains
+K,
z—12z-0.43
B 047K,z
(z—1)(z—-0.43)+0.47K ,z
047K,z

T 221 (047K, —1.43)2+0.43

1.43-0.47K, ++/(0.47K, —1.43)* —1.72
Pr=
2
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Kp=2.3

250

66

200 )
s 150 1
o
“_:; vvwwmmmmom
o
n>.‘ 100
L 2
50
0 . T T T
10 20 30 40 50
Time (k)
Conclusions:
P is fast

r(k)=200

| is accurate and has less overshoot.

Design challenge:

Make P accurate.
Reduce P’s overshoot.

K/=0.8

yl (output)

250

200 -

150

100

50

>— | o ]

o

10

20 30
Time (k)

40

50




R+~

ue)

K(z)

>

Y(z) ‘

G(2)

Precompensation: Adjusts the reference input so that the right output is obtained.

R(z) _.m:._Q__.

E(z)

K(z)

U(Z)‘

G(2)

Y(z) :

Modify P control to include pre-compensation
Find a value for the precompensator that makes P control accurate

Trial and error

Adjust based on ratio between reference and output

What happens if the reference input changes? What if the control gain changes?
What is the general rule for the value of the precompensator?
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E

©

Computing Value of p 4
Precompensator @ *m—‘_?

K(z)

Utz)

G(2)

Want R(1)P(1)F,(1) = R(1)
1 1-0.43+047K,

So P(1) = =
Fo(1) 0.47K,

Consider K, =2.3, R(z) = 200; then P(z) =1.53

Try on spreadsheet. See if it works for other reference inputs.
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Reducing P’s Overshoot

~ 200

2 150 it
2 100 Il
o

> 50

E(z) Uz) Y(z) "2 0 1 @ 5
R(Z) %?— K(Z) > G(z) > Time (k)

c — Weight past history (make it smoother)
t(k+1)=ct(k)+y(k+1)

E(z Uz Yz T(z

Filter- Smooths values over time.

Lab 5: Precompensation + Filter
m Add a filter to precompensated P control
m What values of ¢ produce smooth t(k)?
m What are the other effects of the filter?
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w/o filter

with filter: ¢ = 0.75

350
300
250
200
150
100

50

1000
r(k)=200
A :: 800 —?ﬁl‘_
)
P 3 f
= 400
s
200
O l [ [ [ [
10 20 30 40 50 0 10 20 30 40 50
Time (K) Time (k)
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The good news about the filter: Can eliminate overshoot
The bad news: Inaccurate and slower.

Why inaccurate?



t(k+1)=ct(k)+y(k+1)

E(z Ulz Y(z 1(z)
k& — P i»(l} Ay il ey B w

Analysis 1: Why does H(z) cause the system to be inaccurate?

Want P()F,(1H)H(1) =1
We have designed P(z) so that P(1)F, (1) =1.So, it must be that A (1) = 1.

ttk+1)=ct(k)+ y(k+1)
zT'(z)=cT(z)+zY(2)

_T(z) =z
()= Y(2) z—c
1
H(l)_l—c

Check the spreadsheet.
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Designing a Normalized Filter

t(k+1)=ct(k)+y(k+1)

E(z Ulz Yz dC
R(z) | p(z) i’? (): K& ()’ G(2) = :m_(z

Want H(1) =1
Can do this by dividing by multiplying by I —c.

. z(l1-c Check the spreadsheet: Lab 6.
That is, use H(z) = d=¢)

z—c
Converting this into a time series model, we have
ttk+)=ct(k)+(1-c)y(k+1)
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t(k+1)=ct(k)+(1-c)y(k+1)

E(z Ulz Y(z 1(z)
Rz — iz i»([} . K() O o 2 w

Analysis 2: Why does H(z) cause the system to be slower?

\
\

What are the poles of P(z)F,(z)H (z)?
Let p =max . {P(2), F(2), H(2)}

P(z) has no poles So, the filter adds a closed loop pole at c.
P (o) - 04K,
2—0.43+0.47K,
1.1
IfK,=23,F,(z)=
’ )= 6s
T(z) 1-c Check the spreadsheet.

H(z)= =
) Y(z) z-c
If ¢ =0.75, then there is a pole at 0.75.
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Pl Controller

V4
z-1

>K/ -1

L —

E(z)
® | Ko —» — >

U(z)

u(k) =, (k) +1, (k)
U(z)

KO=%5

= K,(2)+K,(2)

u(k) =u(k—1)+ (K, + K, )e(k) - K ye(k —1)
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M4 — Applications

m DB2 Utilities Throttling (DB2 v8.1)

Sujay Parekh, Kevin Rose, Yixin
Diao, Victor Chang, Joseph L. Hellerstein, Sam Lightstone, Matthew Huras. American Control
Conference, 2004.

m Self-tuning memory management

> " ," Yixin Diao, Joseph L.
Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian
Garcia-Arellano. American Control Conference, 2004.
¢ Yixin Diao, Joseph
L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and
Christian Garcia-Arellano. Real-Time and Embedded Technology and Application Systems
Symposium, 2004.
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http://www.databasejournal.com/features/db2/article.php/3339041
../../../../../Temp/sujay/PerformanceManagement/WebPage/External/rc23163.pdf
../../../../../Temp/sujay/PerformanceManagement/WebPage/External/rc23213.pdf
../Temp/sujay/PerformanceManagement/WebPage/External/rc23230.pdf

The Ulilities Throttling Problem

[T
T
(||~ === .
(I -
10}
a
< 8t
[0
o
£ ol Performance Degrades
2
2
= 4
i . Jo Uttt
ili —— w/o Ultility
ariod —— with Utility
ol__Started . ,
0 500 1000 1500

Time (sec)

Utilities have a big impact on production performance.

Administrative policy

There should be no more than an x% performance degradation of
production work as a result of executing administrative utilities
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Effector: Priority vs Self-Induced Sleep (SIS)

CPU Priority

W ___b [¢)]

Throughput

2500

ed control

0 200 400 600 800 1000 1200 1400 1600 1800 2000 500 1000 1500

Time (sec) Time (sec)
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DBA

WL

|

Impact
R ; E » Controller 9 »  DB2
S
7% Impact Pages/sec
i Baseline Model Y
M Estimation Estimation
L Comgute Y
Degradation |

R: Impact Limit
E: Error
U: Sleep %

Y: Pageometer
(pages/sec)

0: Model
parameters

Y*: Baseline perf

Assume linear effect of throttling on Y

——» Controller > a

Utilit

Workload
b

b
au Y

Online Modeling to translate from Pages/sec (Y) to % Impact (M)



Controller Evaluation
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Database Memory Management

Memory management is key to database
performance.

Optimize performance by equalizing loads
across the memory pools.

Buffer | Buffer =9 Buffer =9 Buffer [ < Sorts
Pool 1 fugl P00I2 fuael Pool3 faal Poold [ S

by
BT
i

Package Cache

\

DB2 UDB Server

Memory pools

DB2

Clients




MIMO Controller Design: Linear Quadratic Regulation

Resource
Consumer 1

Load :
Balancer | *

pzd
-

Resource
Consumer N

k=1 i=I k=1 i=I k=1 i=l
Cost of load imbalance Cost of control
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Measured Benefit of Load Balancing

m Decision support workload

Long running transactions

Resource requirements vary over time

m Study effect on total query response time (Ts) in TPC-H.
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Control systems consists of elements
Controller, target system, transducer, filter, adapter, ...
Control objectives for computing systems focus on
SASO: Stability, accuracy, settling time, overshoot
Classical control theory builds on linear system theory
Signals, transfer functions, composition of systems, use of z-transform to encode
time related information
Control analysis involves
Constructing ARX models for components
Translating these models into the z-domain (transfer functions)
Using composition of systems to find the end-to-end transfer functions of interest
Analyzing the SASO properties of these systems
These simple models and analyses have had significant practical at IBM
Regulating the execution of administrative utilities
Self-tuning memory management



Summary of Results

Transfer Function

Adding signals:
of System
A(z) {c(k)=a(k)+b(k)} has
Y(z ) é; C(z) Z-Transform A(z)+B(z).
G(z) > t+
o ] P B(z)
15l 0.4 ?3) Transfer functions in series

N U(z) W(z) Y(z)

0.3 A

S ( YOO
0.2} is equivalent to
05| ol —U-[UZ G(z)H(z) P2,

D 10 20 30 S 10 20 30 Transfer function of a feedback loop

k k Target

: - R(z) Controller  System T(z)
Stable system if |a|<7, where a is the largest pole Yool K o {6 =0
of G(z) -
Settling time ~ |, where | a | is the largest pole of G(z) Transducer
nla
T(z)
o0 — —
Steady state gain of G(z) is > () _ G(1) Fr(2)=
u(e)
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K(2)G(z)
R(z) 1+H(2)K(2)G(z)
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